On a Symmetric, Nonlinear Birth-Death Process with Bimodal Transition Probabilities

نویسندگان

  • Antonio Di Crescenzo
  • Barbara Martinucci
چکیده

We consider a bilateral birth-death process having sigmoidal-type rates. A thorough discussion on its transient behaviour is given, which includes studying symmetry properties of the transition probabilities, finding conditions leading to their bimodality, determining mean and variance of the process, and analyzing absorption problems in the presence of 1 or 2 boundaries. In particular, thanks to the symmetry properties we obtain the avoiding transition probabilities in the presence of a pair of absorbing boundaries, expressed as a series.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representations for the Decay Parameter of a Birth-Death Process Based on the Courant-Fischer Theorem

Abstract. We study the decay parameter (the rate of convergence of the transition probabilities) of a birth-death process on {0, 1, . . . }, which we allow to evanesce by escape, via state 0, to an absorbing state -1. Our main results are representations for the decay parameter under four different scenarios, derived from a unified perspective involving Karlin and McGregor’s representation for ...

متن کامل

Birth/birth-death processes and their computable transition probabilities with biological applications.

Birth-death processes track the size of a univariate population, but many biological systems involve interaction between populations, necessitating models for two or more populations simultaneously. A lack of efficient methods for evaluating finite-time transition probabilities of bivariate processes, however, has restricted statistical inference in these models. Researchers rely on computation...

متن کامل

Applied Probability Trust (26 February 2014) REPRESENTATIONS FOR THE DECAY PARAMETER OF A BIRTH-DEATH PROCESS BASED ON THE COURANT-FISCHER THEOREM

We study the decay parameter (the rate of convergence of the transition probabilities) of a birth-death process on {0, 1, . . . }, which we allow to evanesce by escape, via state 0, to an absorbing state -1. Our main results are representations for the decay parameter under four different scenarios, derived from a unified perspective involving the orthogonal polynomials appearing in Karlin and ...

متن کامل

Birth(death)/birth-death processes and their computable transition probabilities with statistical applications

Birth-death processes track the size of a univariate population, but many biological systems involve interaction between populations, necessitating models for two or more populations simultaneously. A lack of efficient methods for evaluating finite-time transition probabilities of bivariate processes, however, has restricted statistical inference in these models. Researchers rely on computation...

متن کامل

The Z-transform Applied to a Birth-death Process Having Varying Birth and Death Rates

The analysis of a birth-death process using the z-transform was recently reported for processes having fixed transition probabilities between states. The current report extends that analysis to processes having transition probabilities that can differ from state to state. It is then shown that the model can be used to study practical queuing and birth-death systems where the arrival, birth, ser...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Symmetry

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2009